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ABSTRACT

Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint)

equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of

the sensitivity equations, the variational methods use the generalized calculus of variations, in which

the variable boundary is considered as the design function. The converged solution of the state

equations together with the converged solution of the costate equations are integrated along the

domain boundary to uniquely determine the functional sensitivity derivatives with respect to the

design function.

The application of the variational methods to aerodynamic shape optimization problems is

demonstrated for internal flow problems at supersonic Mach number range. The study shows, that

while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range

for engineering prediction purposes, the variational methods show a substantial gain in

computational efficiency, i.e., computer time and memory, when compared with the finite difference

sensitivity analysis.
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1. INTRODUCTION

1.1 Overview of Aerodynamic Design Optimization and Sensitivity Analysis

In the early times of flight, improvement of vehicle performance was mostly based first

on intuition, empirically accumulated databases, and cut-and-try procedures [ 1,2]. Even recently,

wind tunnel testing is being employed to perform optimization work to obtain airfoil

performance criteria[3]. While this approach gave many valuable technical assistances, it was

unable to furnish quick and reliable information to perform on-line design changes.

In recent years, aerodynamic performance has been analyzed by a method of

mathematical optimization. Eventhough there are many ways of optimization, we concenatrate

only on the methods of optimization that require gradient information.

1.1.1 Gradient-Based Methods (Numerical Design Optimization)

With the advantage of modem hardware and software computer technologies, numerical

design optimization and sensitivity analysis are currently being used to investigate the complete

aircraft design problem using two-dimensional Navier-Stokes and three-dimensional Euler

equations. These techniques are discussed here briefly.

1.1.1.1 Finite Difference Sensitivity Analysis The simplest, but the most expensive, sensitivity

analysis technique used by gradient-based optimization methods is the finite difference approach.

This method uses the one-sided or central-difference alternative to evaluate the sensitivities of

performance functionals, and consequently, the computational time invested would increase with

the increment of the number of design variables. This is due to the requirement to perturb each

design variable by an appropriate step size and then compute the flow field variable for each new

perturbed design variable with the chosen flow solver. This approach has an additional problem

to determine the correct step size a priori so that the correct gradient is predicted within a given

degree of accuracy. Despite its shortcomings, Huddelston and Mastin [4], and others, have

applied this approach in their design procedure with Euler and Navier-Stokes equations. In the
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optimizationpackagefor generalpurposesoptimizations,Vanderplaats[5] hasalsoincorporated

finite differenceasanalternativeto acquirethegradientinformation.

1.1.1,2 Discrete Sensitivity Analysis The other category of sensitivity analysis technique is the

discrete analysis approach. The computation of the sensitivity equations is based on the Implicit

Function Theorem. Due to the implicit dependence of the functional (objective function) and

constraints on the flow field quantities, the determination of the sensitivity derivatives is related

to obtaining the derivatives of the flow field vector with respect to the design variables. As the

flow field equations are in most cases solved in a computational domain, the functional

dependence of the metric terms and the coordinate points with respect to the design variables are

also required. This approach first calls upon the multiplication and assembly of various terms to

a very large sparse linear algebraic equations, which depend on the number of design variables,

and then solution of these sparse system of algebraic equations for the derivatives of the solution

vector with respect to the design variables. Despite the large computational intensity and huge

memory requirements of this approach, the versatility to incorporate many types of constraints,

the need to perform multidisciplinary designs of moderate geometrical complexity, and the

flexibility to incorporate it with any existing optimization algorithm make it attractive to perform

design and shape optimizations.

A wealth of literature can be found for this category. Hicks [6] and Vanderplaats [7,8]

have used the discrete approach to design airfoils in transonic flow regimes. Pittman [9] has also

used this procedure for supersonic flow conditions. Using the small perturbation equations in two

dimensional flows, Elbana and Carlson [10] have also employed the technique. Eleshaky [11]

used this method for both internal and external flow problems. He also integrated the domain

decomposition method in solving the sensitivity equations. Burgreen [12] further extended the

methodology to the three-dimensional wing optimization and introduced an efficient way of

parameterizing the curves and surfaces using the Bezier polynomials. With a variant of

approximation to the fluid flow, Taylor et al. [13], Newman et al. [14], and Hou et al. [15]

introduced an incremental iterative technique to obtain the gradient information. In doing so,



they have applied this new approachnot only to the two-dimensional Euler and thin-layer

Navier-Stokes turbulent equations for internal and external flows but also to the three-

dimensionalEuler equationsin supersonicflow regimes.

1.1,1.3 Variational Sensitivity_ Analysis The new emerging sensitivity analysis technique for

gradient-based optimization methodology within the optimization community is the continuous

sensitivity (variational sensitivity) analysis which fully exploits the variational methods. From

the modified functional, this approach derives a set of partial differential equations (PDEs), i.e.

the costate equations with their boundary conditions and the sensitivity equations. In computing

the sensitivity derivatives with respect to the control points or design variables, this approach

makes use of the converged solution of the state and costate equations.

In recent years, variational sensitivity analysis has significantly contributed to the

progress of aerodynamic design optimization. Pironneau [16] showed the usefulness of the

variational approach in fluid mechanical problems by illustrating how to compute the minimum

drag profile in two-dimensional viscous and laminar flows. Chen and Seinfeld [17) developed a

methodology to compute the performance sensitivity derivatives using optimal control theory.

Koda et al. [18] used this procedure to solve atmospheric diffusion problems. Koda [19 - 21]

further developed this approach and outlined a numerical algorithm for the computation of

functional derivatives. This approach is well suited to solving the optimum design problems in

fluid mechanics. Meric [22,23] treated optimal control problems governed by parabolic and

elliptic partial differential equations and solved them numerically using variational methods. In

their effort to compare the gradients obtained by "implicit" and "variational" approaches, Shubin

and Frank [24] implemented VM to optimize the shape of a nozzle of a variable cross - sectional

area for steady one-dimensional Euler equations. Jameson [25] regarded the boundary of the

flow domain as a control parameter and then designed airfoils using the potential as well as the

two- and three-dimensional compressible inviscid flows. Cabuk and Modi [26] implemented a

perturbation method to compute the optimum profile of a diffuser for a maximum static pressure

in a two-dimensional steady viscous incompressible flow. Ta'asan et al. [27] have successfully
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implementedvariational methodsand optimized an airfoil in the potential flow field. Quite

recently,IbrahimandBaysal[28] demonstratedtheversatilityof thevariationalmethodsto solve

aerodynamicaldesignproblemsfor internal flows in different Machnumberregimesincluding

shockflows. Following the sameapproachasJamson[25], Reuter and Jameson [29] optimized

airfoils in potential flows. Iollo and Salas [30] used variational methods to solve two-

dimensional internal flow optimization problem with embedded shock to match a pressure

distribution. In this class of optimization, the functional sensitivity derivatives are directly

coupled to the solution of a set of linear partial differential equations, i.e., the costate equations

and their boundary or transversality conditions that result from the variation of the augmented

Lagrangian function. The success of any optimization by this approach is, therefore, destined to a

stable and converged solution of the costate equations.

1.2 Generality of the Variational Approach

First, since the costate equations are once and for all derived from the continuous PDE of

the state equation, any robust solution method can be adopted to furnish the converged solution

so that the costate equations can be solved until convergence is attained. This means that one

does not necessarily have to solve the original state equation from which the costate equations

are derived. Secondly, any other convenient discretization methods different from the type of

discretization one uses for the state equations can be selected for the costate equations. The

requirement that the costate equations be discretized exactly the same way as the state equations

is shown not to be necessary, at least for quasi one-dimensional Euler equations [31 ]. Thirdly,

any time integration method different from the time integration method used for the state

equation can be selected to advance the costate equations to steady state. The fourth point to

mention is the design variables. In the approach proposed, note that the shape of the domain is

considered as the design parameter, and its contribution to the functional sensitivity derivatives is

directly incorporated as shown in Ref. 32.



2. AERODYNAMIC DESIGN OPTIMIZATION AND SENSITIVITY ANALYSIS

2.1 Constrained Optimization Methodology

A constrained optimization method in general encompasses three elements of

optimization, i.e., design variables, constraints, and objective function. These are discussed here

briefly.

2.1.1 Design Variables in Variational Sense

In most aerodynamic optimization problems, the design variables are generally of a

geometric nature, such as the coefficients of some geometric functions, surface grid points [11],

aerofunctions [33], or polynomial functions such as Bezier-Bernstein functions [12,34] and

spline functions [35].

Variational methods treat the boundary of the domain in a continuous fashion, and

therefore, the boundary is considered as part of the solution to the design problem. With the

assumption that the domain f_ is sufficiently regular, the location of points on the boundary Xr

can be considered as a continuous design variable. Mathematically, the coordinates of the

varying boundary in the continuous sense can be expressed as

_r :_(_D ) (1)

where X'd are the design variables. In aerodynamic optimization problems, the vector of design

variables is provided for very limited and simplified geometries, for instance, four digit NACA

airfoils and some nozzles. However, for general-purpose geometries, these control points must

be determined through iterative methods from certain functional relationships such as the Bezier-

Bernstein polynomials [12]. Because these polynomial functions are known to generate smooth

curves and surfaces for a minimal number of control points, the function .f which describes the

curve for the two-dimensional problem, is given by [34]
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where

f(_-) = _Xd,,B,,,(g) for _- E[0,1] (2)
i=0

B_,,,(g) = C(n,i)g'(1 - g)"-' (3)

n!
C(n,i) - (4)

i!(n - i)!

In Eqs. (2) - (4), B,,, (g) are the blending functions, which are key to the behavior of the curve,

C(n,i) are the binomial coefficients, g is the normalized arc length and n is the order of the

Bezier-Bernsten polynomials. In this study, with the use of Eqs. (1) - (4), the location of the

control points can be considred as the design variables.

2.1.2 Constraints

Constraints are the integral parts of the optimization procedure that influence the final

outcome of the functional. They can be geometrical, flow-type, equality or inequality constraints,

or a combination of all or some that depends on the particular optimization problem one wants to

address.

In the variational formulation of design optimization problems, the flow-type constraints

are expressed in the integral forms. The geometrical and side constraints, on the other hand, can

be formulated either in the integral or discrete forms. For the general variational approach,

generic flow-type constraints are expressed as

=f gj(O, )er o
F

forj = 1, 2, ..., nconf (5)

where F, is the deformed boundary and nconf is the number of generic fluid-type constraints.

The generic geometric-type and the side constraints can also be given as



Gj(XD) < 0 forj = nconf+l, nconf+2, ..., ncon (6)

and

_(rlower SiD _ _iD_ i D _ _(- upper
for i = 1, 2, ..., ndv (7)

where ncon is the total number of constraints, and ndv is the number of design variables,

respectively.

2.1.3 Objective Functional

In the variational methods (VM), the objective functional is defined in the form of a

definite integral involving an unknown state function Q, which can be dependent on some

normal vectors _ and other problem parameters. Then, the objective functional is extremized at

the converged state solution over the curve of the surface described by the vector of design

variables. Mathematically, a generic functional on the boundary Jr, is defined as

where D, for the two-dimensional problem, is the objective function specified on the curve or

boundary. The selection of the objective function is mostly dictated by the flow physics.

2.2 Variational Formulation of Aerodynamic Optimization Problem

When constraints are involved in the optimization problem, the partial derivatives of the

functional and the constraints cannot be zero at the same time since they are functionally related

to each other through the optimality criteria [36, 37]. One common practice is to cast the

constrained optimization to unconstrained optimization through the introduction of the weighting

functions or Lagrange multipliers _,(A"). The other is to sequentially solve a linear or quadratic
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programming problem, which is an approximation of the original constainedminimization

problem. In the later approach,one needs to derive the sensitivities of the performance

functional.

To start the derivation, the steady state solution of the two-dimensional Euler equations,

i.e., the residual R(Q), is written as

(9)

and the generic boundary conditions are expressed as

H(O,,_) = 0 (10)

Without changing its value, the objective functional Jr can now be modified as

f_ F

(11)

where F and _ are the deformed boundary and domain, and _, and fi are vectors to be

determined.

2.2A Standard Formulation of an Aerodynamic Optimization Problem

A mathematical formulation of the constrained optimization problem can be expressed as

min {Jr} (12)

subject to

=f g,(O, )de o
F

forj = 1, 2, ..., nconf (13)
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j = nconf+ 1, nconf+2, ..., ncon (14)

and

_(lower Xi D ,rupper"_iD _ _ -2_iD
i = 1, 2, ..., NDV (15)

where the flow field variables 0 are the solution to the state equations, R(Q).

2.2.2 Derivation of Functional Sensitivity Equations

As the detailed derivation for functional sensitivity is showen in Ref. 32, we give here

only the high lights of the procedure. Hence, the variation of the fluxes (to the first order) can be

written as

6"E = 260 and 6F = B 6Q (16)

where A, and B are the Jacobian matrices in the x and y directions, respectively. Then the

fluxes on the deformed space due to the variation of the boundary can be approximated as

E(_)) -- E(0) + 6E(0) and F(O)= F(0)+ 6F(O) (17)

By application of the principles of calculus of variations, the variation of the modified functional

can be approximated by [36]

(18)

where ._ and )( are position vectors of the deformed and undeformed coordinate systems,

respectively. Then, the Taylor expansion of the integrand of Eq. (18) is computed (the linear part

relative to e ) as [36-38]
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+ _r +6A Ex(Q)+(6E(Q))x+Fy(Q)+(6ff(O))y Jsde

-ft, r[Ex(O) + ff y(Q_.)]df2-f[D + fir H]dF (19)
f2 F

where e is a small parameter, J, is the space transformations matrix that is given as

Js = I + _7.6f_ [32] and the quantity t¢ in Eq. (19) is the curvature and can be calculated as [37]

= -V oF (20)

where o denotess a dot or inner product and _ is the unit normal which can be computed from

the grid generating routine or from the analytical derivatives of the Bezier-Bernstein polynomials

as [34]

[0? (92f] J 6_f3[ -I ®-2gr211 / <21>

where ® is a vector multiplication sign and f(K) is defined in Eq. (2). In Eq. (19), 6n is defined

as

& = _2o_ (22)

Now, by taking only the linear terms of Eq. (19), one obtains

+ f_T[ff_, x -1- fy_Fld_ (23)

F
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Using Eq.(16) and performing integration by parts, the second term in Eq. (23) is expressed as

(24)

Substitution of Eq. (24) into Eq, (23) gives

+ 63, Ex(Q)+ P,(O) ag2+f6fi r_dF + f_r Ex + ndF
F F

(25)

Note that for the arbitrary variations of 6_, and 6fi and with Eqs. (9)and (10), the last two terms

in Eq. (25) are identically zero. Then Eq. (25) reduces to

(26)

In Eq. (26), the vectors _,, and/_ can now be determined to eliminate the terms

associated with 6Q. Consequently, the costate (adjoint) equations are given as

x- = G in g2 (27)

Upon the combination of Eqs. (26) and (27), the variation of the functional becomes
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(28)

With Eq.(A.11) in AppendixA of Ref. 32, we now express 6Q in terms of 6Q to get

6"_=6Q- OQ 6f( (29)
oX

For the sake of computational simplification, the variation of 6)( on the boundary is limited only

to the y component in this study, i.e.,

6__-[0,6y]T (30)

and Eq. (29) is simplified as

Also an approximatation of Eq. (22) and use of Eq. (30), Eq. (22) can be written as

6n = 6Xo _

=

= ny o 6y (32)
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By useof Eqs.(29)- (32),Eq. (28) is now givenas

I_JFa _ f { DQ_)O ar l,'lyDnf_y-.[-l.lyDKf_y - YlyDQOy_y ..I-)d_

F

F

.+f{i:[_nx+"_n_](60-nrO:y)}_+f£T[E_+T_y6y_
r F

(33)

For arbitrary 6Q and the variation of y on the boundary F, Eq. (33) gives the boundary

conditions for the costate equations and the sensitivity equations, respectively, as

{t l T- } on F (34)

and

6Jro =S{D, + Dt¢- DQQy+/]r[_, + .__ HQO__.y]}ny6ydF
F

-f{i:[_nx+ Bny]Oy }nyOydr + f f_r[ff-,x+ Fy_yOyd['
F F

(35)

The unique determination of Eq. (35), therefore, demands the unique and converged solutions of

Eqs.(9) and (10), (27), and (34).

2.2.3 Derivation of Constraint Sensitivity Equations

With the constraints defined in Eq. (13), the residual, and the boundary conditions, Eqs.

(9) and (10), one can formulate the modified constraints as

F _ F

for j = 1, 2, ..., nconf (36)
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By following thesameprocedureaswasdonefor theobjectivefunctional,thecostateequations,

boundaryconditions,andtheconstraintderivativecoefficients,respectively,canbeexpressedas

for j = 1, 2, ..., nconf in g2 (37)

_ IT- _,_}nx+Bny '_j+&o_ +H_j =0 forj = l, 2, ..., nconf on F (38)

F

0_2 F

for j = 1, 2, ..., nconf (39)

As can be discerned from Eq. (39), the computation of the constraint sensitivity equations

requires the solution of a new set of costate equations and boundary conditions as many times as

the number of constraints.

2.3 Numerical Optimization

Two steps are essentially followed in this approach. The first step is to determine the

search direction, S, and the second is to compute the magnitude of the step size a. These two

quantities can be computed as proposed in Refs. 39 and 40 A typical computation of the feasible

direction starts at the boundary of the feasible domain, and its magnitude and directions are kept

constant as long as the search direction keeps the design variables in the feasible domain while

improving the performance index. Otherwise, a new search direction and step size are

recomputed with the new gradient information and this process continues until the optimality is

met. Mathematically, the feasible direction can be formulated as

_T o Vg i <_O, (40)



wherei is part of the active constraints and the usable direction at a point is given by

_T OVJl_, < 0 (41)

15

The change in design must be sought along the combination of the useable and feasible

directions so that the functional or the performance index is reduced as much as possible, and the

design is kept away from the constrained boundary as much as possible. By the use of Eqs. (40)

and (41) in the method of feasible directions, the new design variables are updated as

_D + 1 = _D + aS (42)

where n is the iteration number. The values of the design variables are continuously altered until

the criteria for the optimal solution of the performance index are satisfied.

3. COSTATE EQUATIONS AND SOLUTION METHODS

3.1 Introduction to the Numerical Integration of Costate Equations

The coefficients of the costate equations are constant matrices whose components are

derived from the converged solution of the state equations. They are globally constant in time

and locally constant in space. But the interpretation of constant matrices must be understood in a

sense that, during the time integration of the costate equations, only the costate variables evolve

in space and time to convergence. The costate equations are identical to the Euler equations in

form, but mathematically, they are different in the sense that they do not meet the homogeneity

requirement to put them in a conservative form like the Euler equations. From the numerical

view point, one can adopt any solution algorithm, which is used for the Euler equations, to the

costate equations. This can be explained by the fact that the fluxes on the cell faces or at grid

points can be artificially constructed by approximating the solution vector of the costate
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equationseither on the cell face from the right and left sides of the cell centers or at the grid

points in exactly the same way one does for the state fluxes and solution vector.

The costate equations, like the state equations, are solved by use of the time dependent

techniques. The Eqs. (27) and (37) are, therefore, modified to include the unsteady term with the

proper signs so that this time dependent technique is fully exploited. Thus, for instance, Eq. (27)

in the generalized coordinates system is expressed as

(43)

The proper sign selection of the time term is dependent on the complementary property of the

well-posed boundary conditions of the state and costate equations. For Eq. (43) to be well-posed,

the positive sign of the time term is selected, and Eq. (43) becomes

(44)

3.2 Boundary (Transversality) Conditions

The objective functional boundary conditions, i.e. Eq. (34), in their general forms are

again for the sake of convenience presented here as

{E 1 } on F (45)

The objective functional and the no-mass penetration conditions are defined only on the solid

boundary, and hence their derivative contributions in Eq. (45) are identically zero. Therefore, the

boundary conditions for the inlet, exit, and center-line reduce to

on (F,.,e,.F ce.,er.Fe_.) (46)
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For the supersonicflow, the inlet condition is known, and hencethe variation of the

vector of the flow field is identically zero. Therefore,with Eq. (46), the valuesof the costate

variablesat the inlet boundarycanbeapproximatedfrom theinternalstencils.Becausethevector

of the flow field is computedfrom the internalgrids atthe exit plane,Eq. (46) givesfour linear

independentequationsfor the costatevariables,which result in all the costatevaribles to be

identically zero. On the centerline,the normal velocity is known to be zero, and one of the

costatevariables,for instance_3, is assignedavalue,andtheremainingflow field quantitiesare

to bedeteminedfrom theresulting3 x 3 systemof equationsasgivenin Eq. (45)

Onewayof treatingtheboundaryconditions,i.e. Eq.(45), is to useEq. (10)andto find a

relationshipbetweentheconservativefield variablesQ by taking the variation of Eq. (10). This

procedure eliminates the constant Lagrange multipliers/7 and modifies the functional sensitivity

derivatives, Eqs. (35) and (39) by a term resulting from the variation of the normal vector _ at

the solid boundary.

On the solid boundary, on the other hand, the costate variables are determined by use of

the complete form of the compatibility relationships and the sign of the eigenvalues of the costate

Jacobian matrices. Once the values of the costate variables on the solid boundary are computed,

the constant Lagrange multipliers /_ of the no-mass penetration condition can be calculated by

solving the complete set of the boundary condition. The results presented in this study are

obtained by solution of the complete boundary conditions as given in Eqs. (34) and (38).

3.3 Linearization of Costate (Adjoint) Equations

By the same linearization procedure we used for the state equations, Eq. (44) can be

approximated as follows:

_ + ^r- = B _',7} (47)

(48)
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"J JO"_'
(49)

By approximation of the time and space terms, Eq. (49) becomes

^r Tn + T -- n (50)

3.4 Time-Integration Method

In this study we have used the implicit, i.e., the ADI method to drive costate equations to

steady state. For the implicit method, the ADI factorization of Eq. (50) is used to split it into the

and r/ sweeps. Let us define the right side R_ of Eq. (50) as

(51)

where R, is the residual for the costate equations. Also, Eq. (50) can be put in its split form of

Jacobians and fluxes as

(52)

Then the _ and r/ sweeps of Eq. (52) are given as

(53)

and

(54)
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4. RESULTS AND DISCUSSION ON DESIGN OPTIMIZATION OF INTERNAL
FLOWS USING TW0-DIMENSIONAL EULER EQUATIONS

The main thrust of this section is to briefly discuss the the numerical results of the

variational sensitivity analysis that are obtained by the use of two-dimensional Euler flow

equations. Additionally, the efficiency and accuracy of the variational sensitivity in comparison

to the finite difference are analyzed.

4.1 Two-Dimensional Nozzle Optimization Problem Formulation

At least a couple of reasons can be given for choosing the two-dimensional nozzle

geometry in order to demonstrate our point of optimization methodology. The first one is that

one can easily obtain various types of nozzle geometries by simply using already known

analytical expressions for different flow conditions. The second important reason is also the need

to develop a scramjet nozzle afterbody for the High-Speed Civil Transport. The third one is the

need to develop efficient wind tunnels with optimal shapes for various experimental wind tunnel

applications. The optimization problem demonstrated here seeks the optimal shape for the

maximum thrust in conjunction with the nonreverse flow condition at the exit. Hence, the

example problem is formulated as the maximization of the functional defined by

Jr =fPa (55)
F

with the constraint that the static pressure P at the exit assumes a certain percentage of the

ambient pressure p_ for maximum expansion at that exit lip of the solid boundary. Therefore,

the constraint is mathematically posed as

(56)
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4.2 Two-Dimensional Nozzle Flow

The initial geometry for this internal flow configuration is given in Fig. 1. It is a

supersonic nozzle where only half of the physical domain is considered with 137 x 69 grid

points. It is a convex type of geometry with the smallest area at the inlet and a diverging

afierbody for supersonic expansion. The only aerodynamic inequality constraint considered is the

criteria on the static pressure at the exit lip of the nozzle to reach a certain percentage of the

ambient pressure as a necessary condition to avoid any reverse flow from underexpansion as the

shape evolves during the optimization cycle.

To assess the variational methods for sensitivity analysis, computational efficiency and

accuracy calculated by variational methods and finite difference are compared. One of the

obvious limitations with the finite difference is the uncertainty to a priori determine the step size

that will give reliable sensitivity derivatives. The magnitude of the stepsize is dependent on how

accurate one needs the derivatives to be. If, for instance, one only needs a 10% deviation from

the assumed exact derivative, then the step size must be under a 10% range of the derivative. In

our case of computing the sensitivity derivatives using the finite difference, we have assigned the

step size to be 0.0001.

The x component of the design variables (Bezier control points) are a priori computed

as being spatially invariable, and the variation of the design variables is allowed only in the y

direction. This apparent limitation of the design variables must not be a hindrance since addition

or deletion of any desired design variables in the design domain will produce the same result. To

verify this claim, two sets of design variables, in addition to the assumed optimal number of

design variables (in this case the optimum is eight design variables), were investigated. The first

set was performed by increasing the number of design variables by four and the second one by

decreasing it by four from the optimal number of design variables. Here, the optimal number

defined as that number of design variables which reproduces the closest shape to that of the

initial geometry.
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As presentedin Table 1,the CPUtime andmemory requirementsof complete cycle of

optimization for the two additional sets of design variables are almost identical for the two-

dimensional optimization case. Therefore, the eight design variables are considered as the

optimal number of design variables which produced the desired computational efficiency for our

test case. On the other hand, this slight memory increase as the number of design variables

increases could be a warning to the eventual computational memory increase as the

dimensionality, number of constraints, and design variables increase. The second aspect of the

role played by the number of design variables may be the influence on the optimal shape (Fig. 2).

All three categories of the design variables produced slightly different optimum shapes from

each other. Comparing all three shapes (Fig. 2), the shape produced by twelve design variables

appears to follow the shape produced by the four design variables in the compression area

(upstream) and the shape of the eight design variables in the expansion area (downstream). The

shape generated by the optimal number of eight design variables shows a slight change of shape

upstream, from approximately x--0.1 to x=0.375, and downstream, from approximately x = 0.7 to

x = 1.0 as compared with the shapes generated by the other sets of design variables. The shape

change in the compression area seems to be more desirable beause it produces high-pressure

ratios and thereby gives more thrust as one integrates the change of pressure along the changing

nozzle shape. The shape change in the expansion region, on the other hand, reduces the ratio of

the static pressure to the ambient pressure, which results in less thrust augmentation. This

physical phenomena is further reflected in Fig. 3 where the optimal thrust of the eighth design

variable shape is higher than the other two design variable shapes.

From the parametric studies (four, eight, and twelve design variables) conducted, one

may conclude that the eight design variables are the optimal number of design variables to

sufficiently represent the nozzle shape and at the same time to give a better thrust and

computational efficiency.

The evolution of the design variables for the variational methods and the finite difference

approach are given in Figs. 4 and 5, respectively. Except for the second and the seventh design
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variables,the generaltrendof theevolutionof the design variables in both approaches is similar.

In the variational case, the second design variable approaches the first design variable and the

seventh one tends to come close to the eighth design variable. In the finite difference case,

however, the second and the seventh design variables tend to pull away from the first and eighth

design variables, respectively. As shown in Fig. 6, due to the movement of the second and the

seventh design variables in the opposite direction, the optimal shapes of the variational methods

and finite difference are slightly different. As explained in the parametric studies, the decrease of

the optimal (as compared with the initial) shape or optimal design variables in the compression

region is much more advantageous to the decrease of the optimal shape or optimal design

variables in the expansion region for the supersonic flow regime. This is due to the effect that the

decrease of the shape in the upstream results in the substantial gain of high pressure ratio

(compare Figs. 7 and 8) which favors the augmentation of more thrust (Fig. 9) in the design

process. Figure 9 also clearly indicates that the pressure distribution in the expansion region in

general and at the lip of the nozzle in particular is within the constraint specification as imposed

in the aerodynamical constraint given by Eq. (56).

As given in Table 2, the accuracy of the variational methods is verified by comparing the

variational functional sensitivity derivatives to the functional derivatives of finite difference. If

one takes into consideration that the sensitivity coefficients of the finite difference are dependent

on the step sizes, then the gradient values obtained by the variational methods are well within the

engineering prediction range, except for the second and the seventh sensitivity coefficients. The

discrepancy of those two sensitivity values may be associated with the difficulty to properly

implement the boundary conditions of the adjoint equations. Despite the differences on these two

sensitivity derivatives which correspond to the second and seventh design variables, the optimal

shape and thrust of the variational methods are comparable with those of the finite difference as

presented in Table 3 and Fig. 6. It is known that the finite difference uses function evaluations to

compute the gradient information while the variational methods solve another set of partial

differential equations and sensitivity derivative equations. Due to this, there is a memory
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increment of approximately 1.3 megawords as shown in Table 4. This slight increment in

memory is negligibleascomparedwith the othergradient-basedsensitivityanalysisapproaches,

suchasthe discretesensitivity analysiswhich requireshighermemoryallocation for the given

optimizationproblem.

5. CONCLUSIONS

A two-dimensional nozzle optimization problem was considered, and the application of

variational methods to compute the optimal shape for the maximum thrust is presented. During

the design process, the supersonic nozzle remained supersonic while improving the performance

index or thrust (Table 2). Also, while the VM's computational accuracy (Table 3) is comparable

with the finite difference, its computational efficiency and memory savings (Table 4) are found

to be substantial. As memory and computational efficiency are the bottle-necks for large two-

dimensional and three-dimensional problem in general, variational methods are one of the most

viable candidates in solving design optimization problems.
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Table1. CPUTime andMemory for Four,Eight,andTwelve Design
VariablesWith VariationalMethods

Designvariables
4

CPUtime (sec)
868.0463

Memory (MGW)
5.249459

8 864.2226 5.249939
12 866.2128 5.250579

Table2. SensitivityDerivativesby VariationalMethodsandFiniteDifference

Xo Variational methods

1 9.1483E-2

2 7.9228E-2

3 -6.6563E-2

4 -5.5491E-2

-4.6421E-2

-3.8979E-26

7 -3.2186E-2

Finite Deviation (%)
difference

9.4441E-2 3.1

1.1062E-2 86.0

-4.7906E-2 28.1

-5.9409E-2 6.6

-5.3278E-2 12.9

15.8-4.6287E-2

-6.9988E-2 53.9
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Initial

Optimum

Table3. Initial andOptimalValuesof Functional and Constraint
for Variational Methods and Finite Difference

Functional

Constraint

Functional

Constraint

Variational methods

0.045481

-2.10787

0.049958

-0.5858

Finite
difference

0.045481

-2.10787

0.049885

-0.5668

Table 4. Efficiency Comparison Between Variational Methods and Finite Difference

CPU

time (sec)

Memory
(MGW)

Complete

optimization
Single
analysis

Euler equations

Co-state

Variational
methods

Complete
optimization

equations

865.098

58.59

5.25 (with
sensitivity

eqs.)

Finite
difference

4356.33

128.23

3.98 (no
sensitivity

eqs.)
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